Beta vulgaris L. var cicla Decreases Liver Injury Induced by Antiarrhytmic Agent, Amiodarone
Corresponding Author
Dr. Ismet Burcu Turkyilmaz
Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Türkiye
Search for more papers by this authorDr. Serap Sancar
Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Türkiye
Search for more papers by this authorProf. Dr. Sehnaz Bolkent
Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Türkiye
Search for more papers by this authorProf. Dr. Refiye Yanardag
Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Türkiye
Search for more papers by this authorCorresponding Author
Dr. Ismet Burcu Turkyilmaz
Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Türkiye
Search for more papers by this authorDr. Serap Sancar
Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Türkiye
Search for more papers by this authorProf. Dr. Sehnaz Bolkent
Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Türkiye
Search for more papers by this authorProf. Dr. Refiye Yanardag
Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Türkiye
Search for more papers by this authorAbstract
Amiodarone (AMD) is an effective antiarrhythmic drug, but its long-term usage strongly forms liver toxicity due to its accumulation tendency. The chard (Beta vulgaris L. var. cicla) is a unique plant which has a blood sugar-lowering effect and powerful antioxidant activity. The aim of the current study was to investigate the possible protective effects of chard on AMD-induced liver injury. Male Sprague-Dawley rats were divided into four groups. Control group, aqueous chard extract given group 500 mg/kg/day for one week, AMD given group 100 mg/kg/day for one week, AMD+Chard given group (at the same doses and times). They were sacrificed on the 8th day. The blood and liver samples were taken. The serum and liver biochemical parameters were found to be changed in AMD treated group. Chard administration reversed these parameters in serum and liver. In histological experiments, necrotic areas, mononuclear cell infiltration, the endothelial rupture in central vein, sinusoidal dilatation, hyperemia, dark eosinophilic cells and picnotic nucleus were observed in liver tissues of AMD treated group. Chard treatment reduced liver tissue damage. Considering results, we can suggest that chard prevented AMD induced liver injury biochemically and histologically.
Graphical Abstract
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1H. Ye, L. J. Nelson, M. G. del Moral, E. Martínez-Naves, F. J. Cubero, World J. Gastroenterol. 2018, 24, 1373–1385.
- 2A. E. Epstein, B. Olshansky, G. V. Naccarelli, J. I. Kennedy, E. J. Murphy, N. Goldschlager, Am. J. Med. 2016, 129, 468–475.
- 3P. Jaiswal, B. M. Attar, J. E. Yap, K. Devani, R. Jaiswal, Y. Wang, R. Szynkarek, D. Patel, M. Demetria, J. Clin. Pharm. Ther. 2018, 43, 129–133.
- 4J. Lu, K. Miyakawa, R. A. Roth, P. E. Ganey, Toxicol. Sci. 2013, 131, 164–178.
- 5S. Bolkent, R. Yanardag, O. Karabulut-Bulan, B. Yesilyaprak, J. Ethnopharmacol. 2005, 99, 391–398.
- 6S. Gezginci-Oktayoglu, O. Sacan, S. Bolkent, Y. Ipci, L. Kabasakal, G. Sener, R. Yanardag, Acta Histochem. 2014, 116, 32–39.
- 7M. Abdul-Hamid, S. R. Galaly, H. Mahmoud, F. Mostafa, BJBAS. 2018, 7, 223–230.
- 8A. A. A. A. El-Sayed, EnvironAsia. 2023, 16, 87–98.
- 9H. Riaz, N. Saleem, M. Ahmad, Y. Mehmood, S. A. Raza, S. Khan, R. Anwar, S. H. Kamran, Br. J. Pharm. Res. 2016, 12, 1–11.
- 10J. Kanner, S. Harel, R. Granit, J. Agric. Food Chem. 2001, 49, 5178–5185.
- 11F. Oztay, S. Tunali, O. Kayalar, R. Yanardag, J. Biochem. Mol. Toxicol. 2020, 34, e22602.
- 12O. Sacan, R. Yanardag, Food Chem. Toxicol. 2010, 48, 1275–1280.
- 13M. Gamba, P. F. Raguindin, E. Asllanaj, F. Merlo, M. Glisic, B. Minder, W. Bussler, B. Metzger, H. Kern, T. Muka, Crit. Rev. Food Sci. Nutr. 2021, 61, 3465–3480.
- 14S. Tunali, E. S. Cimen, R. Yanardag, J. Food Biochem. 2020, 44, e13382.
- 15K. Öhlinger, M. Absenger-Novak, C. Meindl, J. Ober, E. Fröhlich, Int. J. Mol. Sci. 2020, 21, 8391.
- 16A. S. Abdel Halim, H. H. Ahmed, H. A. Aglan, F. F. Abdel Hamid, M. R. Mohamed, Biotech. Histochem. 2021, 96, 418–430.
- 17A. Atıcı, R. Asoğlu, H. A. Barman, I. Şahin, Anatol. J. Cardiol. 2019, 21, 5011–5012.
- 18R. G. Trohman, P. S. Sharma, E. A. McAninch, A. C. Bianco, Trends Cardiovasc. Med. 2019, 29, 285–295.
- 19I. B. Turkyilmaz, R. Yanardag, Bulg. Chem. Commun. 2019, 51, 20–24.
- 20J. D. Schumacher, G. L. Guo, Toxicol. Appl. Pharmacol. 2015, 289, 40–47.
- 21N. Mesens, M. Desmidt, G. R. Verheyen, S. Starckx, S. Damsch, R. De Vries, M. Verhemeldonck, J. Van Gompel, A. Lampo, L. Lammens, Toxicol. Pathol. 2012, 40, 491–503.
- 22G. Ballistreri, M. Amenta, S. Fabroni, V. Consoli, S. Grosso, L Vanella, V. Sorrenti, P. Rapisarda, Nat. Prod. Res. 2021, 35, 5378–5383.
- 23O. Ozsoy-Sacan, O. Karabulut-Bulan, S. Bolkent, R. Yanardag, Y. Ozgey, Biosci. Biotechnol. Biochem. 2004, 68, 1640–1648.
- 24A. C. Nicolescu, Y. Ji, J. L. Comeau, B. C. Hill, T. Takahashi, J. F. Brien, W. J. Racz, T. E. Massey, Toxicol. Appl. Pharmacol. 2008, 227, 370–379.
- 25R. T. Stravitz, A. J. Sanyal, Clin. Liver Dis. 2003, 7, 435–451.
- 26B. Al-Shammari, M. Khalifa, S. A. Bakheet, M. Yasser, Oxid. Met. 2016, 2016, 1–10.
- 27G. Ibrahim Fouad, R. M. Mousa, Mol. Cell. Biochem. 2021, 476, 3433–3448.
- 28H. Zhang, R. Liu, Q. Lu, Molecules 2020, 25, 1264.
- 29F. Oztay, O. Sacan, O. Kayalar, S. Bolkent, Y. Ipci, L. Kabasakal, G. Sener, R. Yanardag, Pharm. Biol. 2015, 53, 1639–1646.
- 30S. Sancar Bas, I. B. Turkyilmaz, S. Bolkent, R. Yanardag, Eur. J. Biol. Res. 2016, 75, 1–10.
- 31Z. Jiang, C. Zhao, X. Li, W. Yi, R. Yan, J. Clin. Pharm. Ther. 2022, 47, 1293–1296.
- 32R. Ferriero, E. Nusco, R. De Cegli, A. Carissimo, G. Manco, N. Brunetti-Pierri, J. Hepatol. 2018, 69, 325–335.
- 33G. Terlecki, E. Czapińska, J. Gutowicz, Cell. Mol. Biol. Lett. 2002, 7, 895–903.
- 34V. Tong, X. W. Teng, T. K. H. Chang, F. S. Abbott, Toxicol. Sci. 2005, 86, 427–435.
- 35E. M. Fikry, W. A. Hasan, E. G. Mohamed, J. Biochem. Mol. Toxicol. 2018, 32, e22029.
- 36M. A. Lanaspa, L. G. Sanchez-Lozada, C. Cicerchi, N. Li, C. A. Roncal-Jimenez, T. Ishimoto, M. Le, G. E. Garcia, J. B. Thomas, C. J. Rivard, A. Andres-Hernando, B. Hunter, G. Schreiner, B. Rodriguez-Iturbe, Y. Y. Sautin, R. J. Johnson, PLoS One 2012, 7, e47948.
- 37Z. Khitan, D. H. Kim, J. Nutr. Metab. 2013, 2013, 1–12.
10.1155/2013/682673 Google Scholar
- 38W. G. Lima, M. E. S. Martins-Santos, V. E. Chaves, Biochimie 2015, 116, 17–23.
- 39S. S. Essawy, K. A. Abdel-Sater, A. A. Elbaz, Arch. Med. Sci. 2014, 3, 537–545.
10.5114/aoms.2013.33222 Google Scholar
- 40M. A. Lanaspa, L. G. Sanchez-Lozada, Y. J. Choi, C. Cicerchi, M. Kanbay, C. A. Roncal-Jimenez, T. Ishimoto, N. Li, G. Marek, M. Duranay, G. Schreiner, B. Rodriguez-Iturbe, T. Nakagawa, D. H. Kang, Y. Y. Sautin, R. J. Johnson, J. Biol. Chem. 2012, 287, 40732–40744.
- 41E. Ak, İ. B. Turkyilmaz, A. Muhan, R. Yanardağ, Online Türk Sağlık Bilimleri Dergisi 2022, 7, 143–150.
10.26453/otjhs.1058146 Google Scholar
- 42R. Sil, D. Ray, A. S. Chakraborti, Mol. Cell. Biochem. 2015, 409, 177–189.
- 43L. F. Silva Santos, A. Stolfo, C. Calloni, M. Salvador, J. Arrhythm. 2017, 33, 220–225.
- 44I. B. Turkyilmaz, R. Yanardag, Marmara Pharm. J. 2016, 20, 131–136.
- 45P. L. Owen, T. Johns, J. Ethnopharmacol. 1999, 64, 149–160.
- 46M. Umamaheswari, K. AsokKumar, A. Somasundaram, T. Sivashanmugam, V. Subhadradevi, T. K. Ravi, J. Ethnopharmacol. 2007, 109, 547–551.
- 47A. D. Pitt, C. Fernandes, N. L. Bewick, P. D. Hemsworth, K. A. Buhagiar, P. S. Hansen, H. H. Rasmussen, L. Delbridge, D. W. Whalley, Cardiovasc. Res. 2003, 57, 101–108.
- 48B. T. Kurien, N. C. Patel, A. C. Porter, A. D′Souza, D. Miller, H. Matsumoto, H. Wang, R. H. Scofield, Anal. Biochem. 2006, 349, 165–175.
- 49H. Kayadibi, M. Gültepe, B. Yasar, A. T. Ince, O. Ozcan, O. M. Ipcioglu, O. O. Kurdas, B. Bolat, Y. Z. Benek, H. Guveli, S. Atalay, S. Ozkara, O. Keskin, Dig. Dis. Sci. 2009, 54, 1764–1771.
- 50S. Huenchuguala, P. Muñoz, R. Graumann, I. Paris, J. Segura-Aguilar, Neurotoxicology 2016, 55, 10–12.
- 51C. Meléndez, P. Muñoz, J. Segura-Aguilar, Neurotoxic. Res. 2019, 35, 255–259.
- 52Z. T. Jing, W. Liu, C. R. Xue, S. X. Wu, W. N. Chen, X. J. Lin, X. Lin, Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 316, G387–G396.
- 53K. Koohi Mohammad, M. Ghazi-Khansari, F. Hayati, H. Staji, M. Keywanloo, E. Shahroozian, Acta Med. Iran. 2017, 55, 416–421.
- 54R. Esse, M. Barroso, I. Tavares de Almeida, R. Castro, Int. J. Mol. Sci. 2019, 20, 867.
- 55N. Tyagi, K. C. Sedoris, M. Steed, A. V. Ovechkin, K. S. Moshal, S. C. Tyagi, Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H2649–H2656.
- 56K. Neubauer, B. Zieger, Cell Tissue Res. 2022, 387, 391–398.
- 57C. S. Frings, T. W. Fendley, R. T. Dunn, C. A. Queen, Clin. Chem. 1972, 18, 673–674.
- 58A. Zlatkis, B. Zak, A. J. Boyle, J. Lab. Clin. Med. 1953, 41, 486–492.
- 59L. Jendrassik, P. Gróf, Biochem. Z. 1938, 297, 82–89.
- 60A. Ledwozyw, J. Michalak, A. Stepień, A. Kadziołka, Clin. Chim. Acta 1986, 155, 275–283.
- 61R. Bais, M. Philcox, Eur. J. Clin. Chem. Clin. Biochem. 1994, 32, 639–655.
- 62E. Beutler, Glutathione in red cell metabolism, A Manual of Biochemical Methods, Grune and Stratton, Eds. New York, 1975, 112–114.
- 63A. A. Mylroie, H. Collins, C. Umbles, J. Kyle, Toxicol. Appl. Pharmacol. 1986, 82, 512–520.
- 64S. Reitman, S. Frankel, Am. J. Clin. Pathol. 1957, 28, 56–63.
- 65K. Walter, C. Schütt, “Acid and alkaline phosphatase in serum,” in Methods of Enzymatic Analysis, Elsevier, 1974, 856–860.
- 66R. L. Levine, D. Garland, C. N. Oliver, A. Amici, I. Climent, A. G. Lenz, B. W. Ahn, S. Shaltiel, E. R. Stadtman, Methods Enzymol. 1990, 186, 464–478.
- 67H. Karker, Scand. J. Clin. Lab. Invest. 1964, 16, 570–574.
- 68E. D. Corte, F. Stirpe, Biochem. J. 1968, 108, 349–351.
- 69H. U. Bergmeyer, Methods of Enzymatic Analysis 1974, 2, 569–573.
- 70A. S. Ridderstap, S. L. Bonting, Am. J. Physiol. 1969, 217, 1721–1727.
- 71F. P. Chinard, J. Biol. Chem. 1952, 199, 91–95.
- 72L. Ernster, L. Danielson, M. Ljunggren, Biochim. Biophys. Acta 1962, 58, 171–188.
- 73G. I. Ingram, M. Hills, Thromb. Haemostasis 1976, 36, 237–238.
- 74O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, J. Biol. Chem. 1951, 193, 265–275.