Volume 5, Issue 1 p. 11-21

Role of bottom sediments in the secondary pollution of aquatic environments by heavy-metal compounds

Peter M. Linnik

Peter M. Linnik

Department of Ecotoxicology and Hydrochemistry, Institute of Hydrobiology, National Academy of Sciences, Geroev Stalingrada Avenue 12, Kiev 254210, Ukraine

*Corresponding author.

Search for more papers by this author
Irina B. Zubenko

Irina B. Zubenko

Department of Ecotoxicology and Hydrochemistry, Institute of Hydrobiology, National Academy of Sciences, Geroev Stalingrada Avenue 12, Kiev 254210, Ukraine

Search for more papers by this author
First published: 05 January 2002
Citations: 110

Abstract

The results of long-term investigations into the concentrations of some heavy metals (Fe, Mn, Cu, Zn, Pb, Cr, and Cd) in the bottom sediments of the Dnieper reservoirs and the Dnieper–Bug estuary are considered. Maximum quantities of the metals studied are characteristic of southern water bodies located within industrial zones (the Zaporozh’e and Kakhovka reservoirs as well as the Dnieper–Bug estuary). The highest concentrations of the metals studied occurred in the clay silts (Fe, 11 600–32 400; Mn, 1504–3450; Cu, 38.9–85.5; Zn, 89.8–186.5; Cr, 48.6–193.0; and Cd, 1.9–4.4 mg kg-1 dry weight). Accumulation of heavy metals in the bottom sediments is an important factor in the self-purification of aquatic environments. However, this process is reversible and therefore provides a constant threat of secondary water pollution. Secondary water pollution is observed in summer and autumn when water consumption increases. The concentrations of heavy metals increase by a factor of 1.5–3 after the drawdown of the water level. The main reason for the rise in the concentrations of metals is exchange between the bottom sediments and the water column. The rate of heavy metal migration is connected with the forms of occurrence in solid substrates and pore solutions in the bottom sediments, as well as with physico-chemical conditions arising at the sediment/water boundary. Therefore, our investigations concentrated on the study of the fractional distribution of heavy metals among solid substrates and their forms of occurrence in interstitial solutions. This distribution depends, most of all, on the chemical properties of metals as well as the chemical and mineralogical composition of the sediments and the chemical properties of pore solutions. Most of the supply of Mn, Zn, Fe, and Cd is associated with oxides and hydroxides of iron and manganese (Mn, 74–93%; Zn, 43–70%; Fe, 27–59%; and Cd, 28–41%). Most copper and chromium is bound to organic matter and to scarcely soluble minerals. In the interstitial solutions studied, metals (except manganese) are found mainly as complex compounds with dissolved organic matter of a different molecular weight. Nevertheless, the fraction of complexes with a relatively low molecular weight (500–5000 Da) prevailed (40–70%). Dissolved manganese in the pore solutions consists chiefly of free (hydrated) ions Mn2+ (80–95%). The results obtained were used for a comparative evaluation of heavy metal mobility and the exchange ability of their associated compounds in the bottom sediment–water system.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.